Synthesis, Reactivities, and Structural Studies on High-Valent Ruthenium Oxo Complexes. Ruthenium(IV), Ruthenium(V), and Ruthenium(VI) Oxo Complexes of **Tertiary Amine Ligands**

Chi-Ming Che,* Ting-Fong Lai,[†] and Kwok-Yin Wong

Received December 10, 1986

The synthesis and characterization of trans- $[Ru^{VI}(L)O_2]^{2+}$, trans- $[Ru^{V}(L)O_2]^{+}$, and trans- $[Ru^{IV}(L)O(X)]^{n+}$ complexes are described [L = 14-TMC (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), 15-TMC (1,4,8,12-tetramethyl-1,4,8,12-tetraazapentadecane), 16-TMC (1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane), (TMEA)₂ (bis(N,N,N',N'-tetramethyl-1,2-diaminoethane)); n = 1, X = Cl, N₃, NCO; n = 2, $X = CH_3CN$]. All trans-Ru(VI)-dioxo complexes are diamagnetic whereas the molar magnetic susceptibilities for trans- $[Ru^{V}(L)O_{2}]^{+}$ and trans- $[Ru^{IV}(L)O(X)]^{n+}$ systems are 1.94 and 2.70-2.95 μ_{B} , respectively. In CH₃CN, trans- $[Ru^{VI}(L)O_{2}]^{2+}$ and trans- $[Ru^{V}(L)O_{2}]^{+}$ exhibit vibronic-structured $d_{xy} \rightarrow d_{\pi}^{*}$ ($d_{\pi}^{*} = d_{xz}, d_{yz}$) transition bands centered at ~380 and 430 nm, respectively. The X-ray structure of trans-[Ru^{IV}(14-TMC)O(NCO)]ClO4 has been determined: $C_{15}H_{32}N_5O_2RuClO_4$, M_r 514.97, orthorhombic, space group *Pnma*, a = 12.507 (2) Å, b = 10.646 (1) Å, c = 15.681 (2) Å, V = 2088.1 Å³, Z = 4, $d_{calcd} = 1.638$ g cm⁻³, μ (Mo K α) = 9.14 cm⁻¹, m = 1943. The Ru=O bond distances of trans- $[Ru^{IV}(14-TMC)O(X)]^{++}$ are all 1.765 Å, which are longer than those for trans- $[Ru^{VI}(L)O_2]^{2+}(1.70-1.71 \text{ Å})$. The $E_{1/2}$ walue for the trans-[Ru^V(L)O(X)]²⁺/trans-[Ru^{IV}(L)O(X)]⁺ couple lies between 0.70 and 1.10 V vs. the Cp₂Fe^{+/0} couple and decreases in the order X = Cl > NCO > N₃. All trans-[Ru^{IV}(L)O(X)]ⁿ⁺ complexes are active electrocatalysts for the oxidation of benzyl alcohol to benzaldehyde. The $E_{1/2}$ values for the trans-[Ru^{VI}(L)O₂]²⁺/trans-[Ru^{IV}(L)O(OH₂)]²⁺ and trans-[Ru^{VI}) $(L)O_2]^{2+}/trans-[Ru^{V}(L)O_2]^+$ couples are insensitive to the macrocyclic hole size of L. Replacement of the σ -saturated tertiary amine by the π -aromatic pyridine or 2,2'-bipyridine weakens the Ru=O bond and increases the oxidation potential of the Ru=O complexes. Studies on the reactions of trans- $[Ru^{VI}(L)O_2]^{2+}$ and trans- $[Ru^{VI}(TMP)O_2]$ (H₂TMP = 5,10,15,20-tetramesity)porphyrin) with organic substrates indicated that the former system prefers attack on an activated C-H bond.

Introduction

High-valent oxo complexes of ruthenium have long been known to be active oxidants in the oxidation of organic substrates.¹ "RuO₄", though a powerful oxidizing agent, is severely limited in its application in organic synthetic reactions because its reactions are usually nonspecific. Other known "Ru^{IV}=O" complexes, such as $RuO_2 \cdot xH_2O$, have poorly understood oxidation chemistry although they find useful applications in photochemical water splitting and the electrochemical chloride oxidation reaction.² Meyer and co-workers first underlined the importance of studying the chemistry and reactivity of "Ru=O" complexes containing nonlabile oxidation-resistant ligands.³ Their extensive works on $[Ru^{IV}(trpy)(bpy)O]^{2+}$ (trpy = 2,2':6',2"-terpyridine; bpy = 2,2'-bipyridine) and related complexes have aroused our interest in this area.³ However, ruthenium oxo complexes containing π -aromatic amines are difficult to study owing to their instabilities and low solubilities in aqueous medium. Macrocyclic tertiary amines, such as 14-TMC (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) (Figure 1) have long been known to encapsulate transition-metal ions in unusual oxidation states. For example, stable low-valent Ni(I) and $Cu(I)\ complexes^{4,5}$ of the saturated tetraazamacrocyclic ligand 1,4,5,7,7,8,11,12,14,14decamethyl-1,4,8,11-tetraazacyclotetradecane could be generated in aqueous solution. The tertiary amine ligands 14-TMC, 15-TMC (1,4,8,12-tetramethyl-1,4,8,12-tetraazacyclopentadecane) and 16-TMC (1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane) (Figure 1)^{6,7} are attractive to us because they are resistant toward oxidation upon complexation to a metal ion. Furthermore, charge-transfer mixing of the amine with the Ru=O bond is reduced to a minimum because of its pure σ -saturated nature. Spectroscopic studies on the "Ru=O" unit with the metal ion in different oxidation states are thus feasible with these ligands. In this contribution, we present a detailed picture on the chemistry and reactivities of "Ru=O" complexes with the central metal ion in oxidation state of +4, +5, or +6; part of the work described in this context has previously been communicated.8

Experimental Section

The tertiary amine ligands 14-TMC, 15-TMC, and 16-TMC were prepared as previously described.^{6,7} $K_2[RuCl_5(H_2O)]$ was obtained from Johnson Matthey Chemicals, Ltd. Tetrabutylammonium perchlorate ([Bu₄N]ClO₄, Southwestern Analytical Chemicals, electrometric grade) was dried in vacuum at 60 °C for 48 h before use. Acetonitrile (Mallinckrodt chromAR) was twice distilled over CaH₂ under argon. All other solvents and chemicals in synthetic work were analytical grade and used without further purification. $trans-[Ru^{III}(L)Cl_2]Cl^{6,9}$ (L = 14-TMC, 15-TMC, 16-TMC, (TMEA)₂ (TMEA = N,N,N',N'-tetra-methyl-1,2-diaminoethane)), trans-[Ru^{VI}(14-TMC)O₂][ClO₄]₂,¹⁰ and trans-[Ru^{VI}(TMP)O₂] (H₂TMP = 5,10,15,20-tetramesitylporphyrin)¹¹

- (1) (a) Courtney, J. L.; Swanborough, K. F. Rev. Pure Appl. Chem. 1972, 47, 22. (b) Lee, D. G.; Vanden Engh, M. Org. Chem. (N.Y.) 1973, 58, 177. (c) Seddon, E. A.; Seddon, K. R. In The Chemistry of Ruthenium; 177. (c) Seddon, E. A.; Seddon, K. R. In *The Chemistry of Ruthentum*;
 Elsevier: Amsterdam, 1984; p 57. (d) Meyer, T. J. J. Electrochem. Soc.
 1984, 131, 221c. (e) Torii, S.; Inokuchi, T.; Sugiura, T. J. Org. Chem.
 1986, 51, 155. (f) Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.;
 Sharpless, K. B. J. Org. Chem. 1981, 46, 3936.
 (a) Borgarello, E.; Kiwi, J.; Pelizzetti, F.; Visca, M.; Gratzel, M. J. Am.
 Chem. Soc. 1981, 103, 6324. (b) Ellis, C. D.; Gilbert, J. A.; Murphy,
 W. P. L.; Mayer, T. L. J. dm. Chem. Soc. 1983, 105, 4842.
- (2)
- Chem. Soc. 1981, 103, 6324. (b) Ellis, C. D.; Gilbert, J. A.; Murphy,
 W. R., Jr.; Meyer, T. J. J. Am. Chem. Soc. 1983, 105, 4842.
 (a) Moyer, B. A.; Meyer, T. J. Inorg. Chem. 1981, 20, 436. (b) Takeuchi, K. J.; Thompson, M. S.; Pipes, D. W.; Meyer, T. J. Inorg. Chem.
 1984, 23, 1845. (c) Moyer, B. A.; Thompson, M. S.; Meyer, T. J. J. Am. Chem. Soc. 1980, 102, 2310. (d) Thompson, M. S.; Meyer, T. J. J. Am. Chem. Soc. 1980, 102, 2310. (e) Samuels, G. J.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4106, 5070. (e) Samuels, G. J.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4106, 5070. (e) Samuels, G. J.; Meyer, T. J. J. M. Chem. Soc. 1982, 104, 4106, 5070. (e) Samuels, G. J.; Meyer, T. J. J. M. Chem. Soc. 1982, 104, 4106, 5070. (e) Samuels, G. J.; Meyer, T. J. J. Meyer, Soc. 1980, 102, 2010. (h) Thompson, M. S.; Meyer, T. J. J. M. Chem. Soc. 1980, 102, 2010. (h) Thompson, M. S.; Meyer, T. J. J. M. Chem. Soc. 1980, 102, 2010. (h) Thompson, M. S.; Meyer, T. J. J. M. Chem. Soc. 1980, 102, 2010. (h) Thompson, M. S.; Meyer, T. J. J. M. Chem. Soc. 1980, 102, 2010. (h) Thompson, M. S.; Meyer, T. J. J. M. Chem. Soc. 1980, 102, 2010. (h) Thompson, M. S.; Meyer, T. J. J. M. Chem. Soc. 1980, 102, 2010. (h) Thompson, M. S.; Meyer, T. J. J. M. Chem. Soc. 1980, 102, 2010. (h) Thompson, M. S.; Meyer, T. J. J. M. Chem. Soc. 1980, 102, 2010. (h) Thompson, M. S.; Meyer, (3)J. Am. Chem. Soc. 1984, 109, 4100, 5010. (c) Samuers, G. J.; Meyer, T. J. J. Am. Chem. Soc. 1981, 103, 307. (f) Moyer, B. A.; Meyer, T. J. J. Am. Chem. Soc. 1978, 100, 3601. (g) Gilbert, J. A.; Eggleston, D. S.; Murphy, W. R., Jr.; Geselowitz, D. A.; Gersten, G. W.; Hodgson, D. J.; Meyer, T. J. J. Am. Chem. Soc. 1985, 107, 3855. (h) Thompson, M. S.; DeGiovani, W. F.; Moyer, B. A.; Meyer, T. J. J. Org. Chem. 1984, 49, 4972.
- (4) (a) Jubran, N.; Ginzburg, G.; Cohen, H.; Koresh, Y.; Meyerstein, D. Inorg. Chem. 1985, 24, 251. (b) Jubran, N.; Cohen, H.; Meyerstein, D. J. Chem. Soc., Chem. Commun. 1982, 517.
- (5) Jubran, N.; Cohen, H.; Koresh, Y.; Meyerstein, D. J. Chem. Soc., Chem. Commun. 1984, 1683.
- (6) Che, C. M.; Wong, K. Y.; Poon, C. K. *Inorg. Chem.* **1986**, *25*, 1809.
 (7) (a) Alcock, N. W.; Curzon, E. H.; Moore, P.; Pierpoint, C. J. Chem. Soc., Dalton Trans 1984, 605. (b) Barefield, E. K.; Wagner, F. Inorg.
- Chem. 1973, 12, 2435 (a) Che, C. M.; Wong, K. Y.; Mak, T. C. W. J. Chem. Soc., Chem. Commun. 1985, 546. (b) Che, C. M.; Wong, K. Y.; Mak, T. C. W. Ibid. 1985, 988. (c) Mak, T. C. W.; Che, C. M.; Wong, K. Y. Ibid. 1985, 986. (d) Che, C. M.; Wong, K. Y. Ibid. 1986, 229.
 (9) Che, C. M.; Kwong, S. S.; Poon, C. K. Inorg. Chem. 1985, 24, 1601.
 (10) Che, C. M.; Wong, K. Y.; Poon, C. K. Inorg. Chem. 1985, 24, 1797.

^{*} To whom correspondence should be addressed. *X-ray structural data for *trans*- $[Ru^{IV}(14-TMC)O(NCO)]CIO_4$ were collected at Caltech by T.-F.L. during her leave from the University of Hong Kong.

Figure 1. Structures of macrocyclic tertiary amines.

were prepared by literature methods.

trans-[Ru^{VI}(15-TMC)O₂[Y]₂ (Y = ClO₄, PF₆). trans-[Ru^{III}(15-TMC)Cl₂]Cl (0.3 g) and silver toluene-p-sulfonate (0.54 g) in H₂O (25 mL) were heated to about 60 °C for $1/_2$ h. The resulting yellow solution (sometimes brownish yellow) was filtered to remove the insoluble AgCl. Hydrogen peroxide (30%, 3 mL) was slowly added into the filtrate while the solution was kept at 60 °C for 5 min. The solution was then cooled in an ice bath. Upon addition of a saturated solution of NaClO₄, yellow microcrystalline solid trans-[Ru^{VI}(15-TMC)O₂][ClO₄]₂ slowly deposited, which was filtered and recrystallized from hot HClO₄ (0.1 M, 60 °C). The hexafluorophosphate salt was similarly prepared by using [NH₄]PF₆ instead of NaClO₄ (yield ~50%). Anal. Calcd for [Ru^{VI}(15-TMC)O₂][ClO₄]₂: C, 29.2; H, 5.7; N, 9.3; Cl, 11.7. Found: C, 29.6; H, 5.8; N, 9.4; Cl, 11.5.

trans-[Ru^{VI}(TMEA)O₂[ClO₄]₂. This was similarly prepared as described for trans-[Ru^{VI}(15-TMC)O₂][ClO₄]₂ with trans-[Ru^{III}-(TMEA)₂Cl₂]Cl as the starting material. Yield: $\sim 23\%$. Anal. Calcd for [Ru^{VI}(TMEA)₂O₂][ClO₄]₂: C, 25.5; H, 5.7; N, 9.9; Cl, 12.5. Found: C, 25.5; H, 6.0; N, 10.1; Cl, 12.2.

trans-[Ru^{VI}(16-TMC)O₂][ClO₄]₂. trans-[Ru^{III}(16-TMC)Cl₂]Cl (0.3 g) and silver toluene-*p*-sulfonate (0.7 g) in water (25 ml) were heated at boiling for $1^{1}/_{2}$ h. The hot solution was filtered to remove the insoluble AgCl. Hydrogen peroxide (30%, 3 mL) was slowly added to the filtrate that was kept at 60 °C for 5 min. This was then ice-cooled. Upon addition of a saturated solution of NaClO₄, yellow solid trans-[Ru^{VI}(16-TMC)O₂][ClO₄]₂ slowly deposited. The crude solid was recrystallized in hot HClO₄ (0.1 M, 60 °C). The yield was 23%. Anal. Calcd for [Ru^{VI}(16-TMC)O₂][ClO₄]₂: C, 31.2; H, 5.8; N, 9.1; Cl, 11.5. Found: C, 31.2; H, 5.8; N, 9.1; Cl, 11.4.

trans - $[Ru^{IV}(14-TMC)O(CH_3CN)][PF_6]_2$. trans - $[Ru^{VI}(14-TMC)O_2](PF_6)_2$ (0.5 g) and PPh₃ (0.7 g) were stirred in acetone-acetonitrile mixture (1:1 v/v, 20 mL) for 1 h. Bright yellow crystals of trans- $[Ru^{IV}(14-TMC)O(CH_3CN)(PF_6)_2$ slowly deposited upon standing. This was further recrystallized by slow diffusion of diethyl ether into an acetonitrile solution of the crude solid (yield ~25%). Anal. Calcd for $[Ru^{IV}(14-TMC)O(CH_3CN)][PF_6]_2$: C, 27.3; H, 5.0; N, 9.9; P, 8.8. Found: C, 27.0; H, 5.0; N, 9.9; P, 9.2.

trans-[Ru^{IV}(15-TMC)O(CH₃CN)]ClO₄]₂. This was similarly prepared as described for *trans*-[Ru^{IV}(14-TMC)O(CH₃CN)][PF₆]₂. Anal. Calcd for [Ru^{IV}(15-TMC)O(CH₃CN)][ClO₄]₂: C, 32.5; H, 5.9; N, 11.2; Cl, 11.3. Found: C, 32.7; H, 5.9; N, 11.2; Cl, 11.7.

trans-[Ru^{IV}(14-TMC)O(Cl)]ClO₄. trans-[Ru^{VI}(14-TMC)O₂][ClO₄]₂ (0.5 g) and PPh₃ (3 g) were stirred in acetone (~30 mL) at room temperature for 1 h. A deep yellow solution was obtained. Upon addition of diethyl ether, yellow solid trans-[Ru^{IV}(14-TMC)O(Cl)]ClO₄ was precipitated off, which was recrystallized by slow diffusion of diethyl ether into an acetone solution of the crude product (~80%). Anal. Calcd. for [Ru^{IV}(14-TMC)O(Cl)]ClO₄: C, 33.1; H, 6.3; N, 11.0; Cl, 14.0. Found: C, 33.5; H, 6.6; N, 11.4; Cl, 14.0.

trans-[Ru^{IV}(15-TMC)O(CI)/CIO₄. This was similarly prepared from trans-[Ru^{IV}(15-TMC)O₂][CIO₄]₂. Anal. Calcd for [Ru^{IV}(15-TMC)O-(CI)]CIO₄: C, 34.5; H, 6.5; N, 10.7; Cl, 13.5. Found: C, 34.8; H, 7.0; N, 10.8; Cl, 13.3.

trans-[Ru^{IV}(TMEA)₂O(Cl)]ClO₄. This was similarly prepared from trans-[Ru^{IV}(TMEA)₂O₂][ClO₄]₂. Anal. Calcd for [Ru^{IV}(TMEA)₂O₂(Cl)]ClO₄: C, 29.8; H, 6.6; N, 11.6; Cl, 14.6. Found: C, 29.8; H, 6.6; N, 11.7; Cl, 14.4.

trans-[Ru^{IV}(14-TMC)O(NCO)]ClO₄. trans-[Ru^{III}(14-TMC)Cl₂]Cl (0.3 g) and silver toluene-*p*-sulfonate (0.6 g) in deionized water (25 mL) were heated to about 60 °C for $^{1}/_{2}$ h. The insoluble AgCl was filtered off, and the filtrate was warmed to about 60 °C on a steam bath. NaNCO (0.1 g) was added to the solution followed by the immediate addition of H₂O₂ (30%, 1 mL). The solution was swirled until effervescence ceased. Additional NaNCO (0.5 g) was added in, and the resulting brown solution was filtered off to remove any insoluble materials. Upon addition of solid NaClO₄ to the filtrate and cooling, golden brown needle-shaped crystals of trans-[Ru^{IV}(14-TMC)O(NCO)]ClO₄

slowly deposited (yield $\sim 24\%$). Anal. Calcd for [Ru^{IV}(14-TMC)O-(NCO)]ClO₄: C, 35.0; H, 6.2; N, 13.6; Cl, 6.9. Found: C, 34.8; H, 6.5; N, 13.6; Cl, 7.1.

trans-[Ru^{IV}(14-TMC)O(N₃)]ClO₄. trans-[Ru^{III}(14-TMC)Cl₂]Cl (0.3 g) and silver toluene-*p*-sulfonate (0.6 g) in deionized water (25 mL) were heated to about 60 °C for $^{1}/_{2}$ h. The solution was filtered to remove the insoluble AgCl. The filtrate was warmed to about 60 °C on a steam bath. NaN₃ (0.1 g) was added to the solution followed by the addition of H₂O₂ (30 mL). The solution was swirled until effervescence ceased. Additional NaN₃ (0.5 g) was then added in. A brown solution of solid NaClO₄ to the filtrate and cooling, brown needle-shaped crystals of trans-[Ru^{IV}(14-TMC)O(N₃)]ClO₄ slowly deposited (yield ~38%). Anal. Calcd for [Ru^{IV}(14-TMC)O(N₃)]ClO₄: C, 32.6; H, 6.2; N, 19.0; Cl, 6.9. Found: C, 32.6; H, 6.3; N, 19.2; Cl, 7.1.

trans-[**Ru**^{IV}(15-TMC)O(N₃)]ClO₄. This was similarly prepared as described for *trans*-[**Ru**^{IV}(14-TMC)O(N₃)]ClO₄. Anal. Calcd for [**Ru**^{IV}(15-TMC)O(N₃)]ClO₄: C, 34.0; H, 6.4; N, 18.5; Cl, 6.7. Found: C, 33.6; H, 6.3; N, 18.3; Cl, 6.9.

trans-[Ru^V(14-TMC)O₂]ClO₄. Preparation of this compound was carried out in a dry-atmosphere glovebox. *Trans*-[Ru^{VI}(14-TMC)O₂][ClO₄]₂ (0.1 g) in an acetonitrile solution of [Bu₄N]ClO₄ (0.1 M) was electrolyzed at constant potential [-0.3 V vs. Ag/AgNO₃ (0.1 M in CH₃CN)] under argon atmosphere by using a glassy-carbon cup as the working electrode. The solution was stirred to ensure rapid electrolysis. When the current flow had ceased, anhydrous diethyl ether was added to the solution. The precipitated yellow solid of *trans*-[Ru^V(14-TMC)O₂]ClO₄ was filtered and washed with anhydrous diethyl ether (yield ~80%). The solid was found to be very hygroscopic. Anal. for [Ru^V(14-TMC)O₂]ClO₄: C, 34.4; H, 6.6; N, 11.5; Cl, 7.3. Found: C, 34.0; H, 7.0; N, 11.0; Cl, 7.7.

trans-[$Ru^{\vee}(L)O_2$]ClO₄ (L = 15-TMC, 16-TMC, (TMEA)₂). Acetonitrile solutions of trans-[$Ru^{\vee}(15-TMC)O_2$]⁺, trans-[$Ru^{\vee}(16-TMC)O_2$]⁺, and trans-[$Ru^{\vee}(TMEA)_2O_2$]⁺ were similarly prepared by constant-potential electrolytic reduction of the corresponding trans-dioxoruthenium(V1) complexes. No attempts were made to isolate these compounds out as solids. Except for trans-[$Ru^{\vee}(TMEA)_2O_2$]⁺, these solutions were fairly stable even upon prolonged storage (more than 1 week in a ground glass joint stoppered flask at 0 °C).

Physical Measurements and Instrumentation. UV-vis spectra were obtained on a Beckman Acta III spectrophotometer. Infrared spectra were obtained as Nujol mulls on a Perkin-Elmer Model 577 spectrophotometer (4000-200 ck⁻¹). Mass spectra were run by using a Hitachi Model RMS-4 single-focusing magnetic sector mass spectrometer. Magnetic susceptibilities were measured by using the Guoy method with mercury tetrakis(thiocyanato)cobaltate(II) as calibrant. Conductivity measurements were performed with a Radiometer Model CDM2 conductivity meter with 0.1 M KCl as calibrant. Constant-potential electrolyses were performed by using a Princeton Applied Research Model 173 potentiostat with a Model 337A coulometric cell system. Elemental analyses of the new complexes were performed by the Microanalytical Unit of the Australian Mineral Development. The formal potentials of the ruthenium complexes were measured by cyclic voltammeric techniques using a Princeton Applied Research (PAR) Model 175 universal programmer, Model 173 potentiostat, and Model 179 digital coulometer.

Gas Chromatographic Analysis of the Organic Products in the Oxidation Reactions of Ruthenium Oxo Complexes. The organic reactants, benzyl alcohol, cyclohexanone, and cyclohexanol were purified by fractional distillation under vacuum and their purities were checked by gas chromatography (GC). No impurity peaks were observed with a flame ionization detector of 10^{-11} A/mV sensitivity. Cyclohexene, cyclohexane, and toluene were distilled under argon, and their purities were also checked by GC. Reactions between the ruthenium oxo complexes and various organic substrates were performed either by dissolving both reactants in a solvent or by suspending the ruthenium complex (50-100 mg) in the liquid substrate (1 mL). The reaction mixture was stirred with a magnet bar, and the temperature was maintained at ± 1 °C by a thermostated water bath. A control experiment in the absence of the ruthenium complexes was performed for each reaction. The organic products were analyzed by GC and IR, NMR, and UV-vis spectroscopy. Gas chromatographic analyses were conducted by using a Varian 2440 gas chromatograph with flame ionization detector. A 10% w/w Carbowax 20M on Chromosorb W (80-100 mesh size) 1/8 in. × 6 ft stainless-steel column was used with nitrogen or helium as the carrier gas. Component identification was established by comparing the retention time with an authentic sample as well as by gas chromatographic mass spectral analysis. Quantitation of individual gas chromatographic components was done by the internal standard method employing a Hewlett-Packard 3380A electronic integrator. Benzyl acetate and n-decyl alcohol were used as internal standards in the quantitative analyses

⁽¹¹⁾ Groves, J. T.; Quinn, R. Inorg. Chem. 1984, 23, 3844.

Table I

Fractional Coordinates^a and Thermal Parameters^b

•	attentional etter			
atom	x	у	z	U_{eq} or U
Ru	18113 (4)	25000	13068 (3)	367 (1) ^c
N(1)	1337 (4)	1027 (5)	2147 (3)	54 (1) ^c
N(2)	2191 (4)	1013 (5)	446 (3)	60 (1) ^c
C(1)	985 (9)	21 (12)	1545 (7)	76 (3)
C(1')	1856 (13)	-27 (18)	1884 (10)	59 (5)
C(2)	1740 (6)	-170 (7)	861 (5)	85 (2) ^c
C(3)	1686 (5)	1276 (9)	-388 (4)	85 (2) ^c
C(4)	2009 (9)	2500	-803 (6)	101 (5) ^c
C(5)	887 (8)	2500	3342 (6)	82 (3) ^c
C(6)	591 (9)	1333 (11)	2753 (6)	71 (4)
C(6')	1538 (13)	1473 (17)	3024 (10)	57 (5)
C(7)	3378 (5)	798 (8)	313 (5)	84 (2) ^c
C(8)	2333 (8)	435 (10)	2626 (6)	70 (3)
C(8')	69 (14)	738 (17)	2204 (10)	57 (5)
N(3)	220 (5)	2500	843 (4)	53 (2) ^c
C(9)	-697 (6)	2500	766 (5)	46 (2) ^c
O (1)	-1645 (4)	2500	665 (4)	74 (2) ^c
O(2)	3121 (4)	2500	1726 (3)	52 (1) ^c
Clk	450 (2)	2500	6624 (2)	71 (1) ^c
O(3)	1515 (18)	2500	6815 (14)	158 (10)
O(3′)	78 (18)	2500	7532 (15)	106 (10)
O(4)	-657 (17)	2500	6865 (13)	147 (10)
O(4′)	734 (27)	2500	5724 (23)	211 (11)
O(5)	171 (10)	1422 (13)	6220 (7)	145 (5)
O(5′)	970 (20)	1563 (20)	7130 (14)	134 (10)
	Occupanc	y Factors for	Partial Atoms	
	000	upancy		occupancy
ato	om fa	actor	atom	factor
C(1), C(6), C(8) 0.6	54 (1) C(1'), C(6'), C(8')	0.36 (1)
0(3)	0.4	59(2) = O(3'))	0.41(2)

 $\begin{array}{c|ccccc} C(1), C(6), C(8) & 0.64 \ (1) & C(1'), C(6'), C(8') & 0.36 \ (1) \\ O(3) & 0.59 \ (2) & O(3') & 0.41 \ (2) \\ O(4) & 0.54 \ (2) & O(4') & 0.46 \ (2) \\ O(5) & 0.67 \ (1) & O(5') & 0.33 \ (1) \end{array}$

 ${}^a \times 10^5$ for Ru; $\times 10^4$ for other atoms. ${}^b {\rm \AA}^2 \times 10^4$ for Ru; ${\rm \AA}^2 \times 10^3$ for other atoms. ^cEquivalent isotropic thermal parameter: $U_{eq} = {}^1/_3 \sum_i \sum_j U_{ij} a^*_i a^*_j a_i \cdot a_j$. The exponent of the isotropic thermal parameter takes the form $-8\pi^2 U(\sin^2 \theta)/\lambda^2$.

benzaldehyde and 2-cyclohexen-1-one respectively.

X-ray Structural Determination. The crystal structures of trans-[Ru^{VI}(15-TMC)O₂][ClO₄]₂, trans-[Ru^{VI}(16-TMC)O₂][ClO₄]₂, trans-[Ru^{IV}(14-TMC)O(CH₃CN)][PF₆]₂, and trans-[Ru^{IV}(14-TMC)O-(Cl)][ClO₄] have previously been communicated.⁸ For simplicity, only the selected bond distances and angles of these four compounds are included in the text here. trans-[Ru^{IV}(14-TMC)O(NCO)]ClO₄ has been characterized by X-ray crystallography.

Crystal Data. $C_{15}H_{32}N_5O_2Ru \cdot ClO_4$, M_r 514.97, orthorhombic, space group *Pnma*, a = 12.507 (2) Å, b = 10.646 (1) Å, c = 15.681 (2) Å, V = 2088.1 Å³, Z = 4, $d_{calcd} = 1.638$ g cm⁻³, μ (Mo K α) = 9.14 cm⁻¹.

Intensity data were collected from a crystal of approximately $0.12 \times 0.15 \times 0.18$ mm on a Nonius CAD4 diffractometer by using the $\omega - 2\theta$ scanning technique in the bisecting mode. Reflections within the $h,k,\pm I$ quadrants extending to $2\theta_{max} = 50$ were measured. A total of 1943 unique reflections were obtained of which 1811 had net intensity (I) greater than zero. Three check reflections monitored continuously throughout the data collections gave no indication of intensity loss. No absorption correction was applied.

Structural Determination and Refinement. The structure was solved by Patterson and Fourier methods and refined by full-matrix least squares. The quantity minimized was $\sum w(F_o^2 - F_c^2)^2$, with weight $w = 1/\sigma^2(F_o^2)$. Atomic scattering factors were taken from ref 12 with an anomalous dispersion correction applied to those of ruthenium and chlorine.

During the early stage of refinement carbon atoms C(1), C(6), and C(8) in the macrocycle and the oxygen atoms in the perchlorate ion showed abnormally large thermal motion; each of these atoms was subsequently refined isotropically over two sites with initial site occupancy factors of 0.5. All the methylene hydrogen atoms were kept at calculated positions with assigned isotropic thermal factors, but contribution from

Table II. Bond Distances and Angles in $[Ru^{IV}(14\text{-}TMC)(NCO)O]ClO_4$

	(a) Dista	ances (Å)	
Ru-N(1)	2.132 (5)	C(1)-C(2)	1.443 (14)
Ru-N(2)	2.134 (5)	C(1')-C(2)	1.618 (18)
Ru-N(3)	2.119 (6)	C(2) - N(2)	1.525 (9)
Ru-O(2)	1.765 (5)	N(2)-C(3)	1.479 (9)
N(1)-C(1)	1.493 (12)	N(2)-C(7)	1.517 (9)
N(1)-C(1')	1.360 (17)	C(3) - C(4)	1.512 (12)
N(1)-C(6)	1.372 (12)	C(5) - C(6)	1.592 (14)
N(1)-C(6')	1.477 (12)	C(5)-C(6')	1.452 (19)
N(1)-C(8)	1.585 (12)	N(3)-C(9)	1.154 (10)
N(1)-C(8')	1.618 (17)	C(9)-O(1)	1.196 (10)
	(b) Ang	les (deg)	
N(1)-Ru-O(2)	91.6 (2)	C(8')-N(1)-C(6')	100.1 (9)
N(2)-Ru-O(2)	91.7 (2)	C(2) - N(2) - Ru	105.1 (4)
N(3)-Ru- $O(2)$	178.7 (2)	C(3) - N(2) - Ru	108.9 (4)
$N(1)-Ru-N(1)^a$	94.6 (2)	C(7) - N(2) - Ru	114.6 (4)
N(2)-Ru-N(1)	84.6 (2)	C(3)-N(2)-C(2)	112.0 (5)
N(3)-Ru-N(1)	87.2 (2)	C(7)-N(2)-C(2)	107.3 (5)
$N(2)-Ru-N(2)^a$	85.9 (2)	C(7)-N(2)-C(3)	109.0 (5)
N(3)-Ru-N(2)	89.5 (2)	C(9)-N(3)-Ru	165.9 (6)
C(1)-N(1)-Ru	102.6 (5)	C(2)-C(1)-N(1)	112.2 (8)
C(1')-N(1)-Ru	106.7 (8)	C(2)-C(1')-N(1)	109.6 (11)
C(6)-N(1)-Ru	116.2 (5)	C(1)-C(2)-N(2)	116.2 (7)
C(6')-N(1)-Ru	107.0 (7)	C(1')-C(2)-N(2)	108.1 (8)
C(8)-N(1)-Ru	111.5 (5)	C(4)-C(3)-N(2)	115.5 (6)
C(8')-N(1)-Ru	116.5 (6)	$C(3)-C(4)-C(3)^{a}$	119.0 (8)
C(6)-N(1)-C(1)	114.1 (7)	$C(6)-C(5)-C(6)^{a}$	102.5 (8)
C(8)-N(1)-C(1)	104.2 (6)	C(6')-C(5)-C(6')	^a 97.8 (12)
C(6')-N(1)-C(1')	117.8 (10)	C(5)-C(6)-N(1)	115.5 (8)
C(8')-N(1)-C(1')	109.1 (10)	C(5)-C(6')-N(1)	117.9 (12)
C(8)-N(1)-C(6)	107.5 (7)	N(3)-C(9)-O(1)	178.6 (8)

^aSymmetry code: x, 1/2 - y, z.

the methyl hydrogen atoms was omitted. In the final cycles of refinement all non-hydrogen atoms except the partial atoms were refined with anisotropic thermal parameters. In the final cycles of refinement all nonhydrogen atoms except the partial atoms were refined with anisotropic thermal parameters. The final R value $[=\sum ||F_o| - |F_c||/\sum |F_o|]$ is 0.051 for 1811 reflections with $F_o^2 > 0$ and 0.047 for 1652 reflections with $F_o^2 > 3\sigma(F_o^2)$. The goodness of fit $[=\sum w(F_o^2 - F_c^2)^2/(m - p)]$ is 4.10 for 1943 measurements (m) and 142 parameters (p). An attempt has been tried to refine the structure in Pna2₁. However, the structure could not be refined to a stage where reasonable bond distances and angles and a satisfactory R factor could be obtained. In view of this, the space group assignment of Pnma is prefered.

The atomic coordinates and thermal parameters are listed in Table I. Selected bond distances and angles are tabulated in Table II. Anisotropic thermal parameters and tables of calculated and observed structure factors are available as supplementary material.

Results and Discussion

The general synthetic routes for *trans*-dioxoruthenium(VI) complexes are outlined as follows:

$$RuO_4 + 4NH_4Cl \xrightarrow{H_2O} trans - [Ru^{VI}(NH_3)_4O_2]^{2+14}$$
(I)

trans-[Ru^{III}(bpy)₂(OH)(OH₂)]²⁺ + Ce(IV) $\xrightarrow{ClO_4^-}$ trans-[Ru^{VI}(bpy)₂O₂][ClO₄]₂¹⁵ (II)

trans-[Ru^{III}(L)(OH₂)₂]³⁺ + H₂O₂
$$\rightarrow$$
 trans-[Ru^{V1}(L)O₂]²⁺⁸ (III)

$$L = 14$$
-TMC, 15-TMC, 16-TMC, (TMEA)₂

 $[Ru^{II}(TMP)(CO)] + RC(=O)OOH \rightarrow$

trans-[Ru^{VI}(TMP)O₂]¹¹ (IV)

Route I was developed by Griffith and co-workers.¹⁴ Other complexes like *trans*- $[Ru^{VI}(C_2O_4)_2O_2]^{2-}$ and *trans*- $[Ru^{VI}(X)_4O_2]^{2-}$ (X = Cl, Br) were also prepared in this way. However, insertion of RuO₄ into the macrocyclic amine is not feasible owing to its

⁽¹²⁾ International Tables for X-ray Crystallography; Kynoch: Birmingham, England, 1974; Vol. 4, p 72.

⁽¹³⁾ CRYM system of crystallographic programs developed by R. E. Marsh and co-workers at the California Institute of Technology, 1984.

⁽¹⁴⁾ Griffith, W. P.; Pawson, D. J. Chem. Soc., Dalton Trans. 1973, 1315.

⁽¹⁵⁾ Che, C. M.; Wong, K. Y.; Leung, W. H.; Poon, C. K. Inorg. Chem. 1986, 25, 345.

instability. Recent works by Groves and co-workers showed that high-valent dioxo(porphyinato)ruthenium(VI) complexes could be obtained by oxidation of $[Ru^{II}P(CO)]$ (P = porphyinate di-anion) with organic peracid.¹¹ The oxidation of Ru(II) and Ru(III) complexes (routes II-IV) containing labile axial ligands by chemical oxidizing agents like H_2O_2 , Ce(IV), or RC(=0)-OOH appears to be the general synthetic methodology for trans-dioxoruthenium(VI) systems containing neutral nonlabile amine ligands.

Meyer and co-workers^{3c} showed that oxidation of a *single* $Ru^{II} - OH_2$ unit in complexes containing nonlabile oxidation resistant ligands led to a Ru^{IV}=O compound. Thus [Ru^{IV}-(trpy)(bpy)O]²⁺ was obtained by Br₂ oxidation of [Ru^{II}(trpy)- $(bpy)(OH_2)]^{2+.3c}$ However, the applicability of this procedure to other Ru^{IV}=O complexes is guite limited due to the difficulties involved in the preparation of the Ru^{II}-OH₂ precursor. Two other methods have been developed for trans- $[Ru^{IV}(L)O(X)]^{n+}$ systems $(n = 1, X = Cl, NCO, N_3, n = 2, X = CH_3CN)$. The first method is the PPh₃ reduction of trans- $[Ru^{VI}(L)O_2]^{2+}$.

trans-[Ru^{VI}(L)O₂]²⁺ + PPh₃ + X
$$\xrightarrow{k_1}$$

trans-[Ru^{IV}(L)O(X)]ⁿ⁺ (1)

trans- $[\operatorname{Ru}^{\operatorname{IV}}(L)O(X)]^{n+} + \operatorname{PPh}_{3} \xrightarrow{k_{2}} [\operatorname{Ru}(\operatorname{II})] + O = \operatorname{Ph}_{3}$ (2)

Reactions 1 and 2 are concerted oxo transfer reactions, as PPh₃ is known to be an oxygen atom acceptor: Isolation of Ru^{IV}=O complexes is feasible only if $k_1 \gg k_2$. This is the case for the trans- $[Ru^{VI}(L)O_2]^{2+}$ system. Preliminary kinetic measurements¹⁶ on trans- $[Ru^{VI}(14-TMC)O_2]^{2+}$ revealed a bimolecular rate law, rate = $k[\operatorname{Ru}(\operatorname{VI})][\operatorname{PPh}_3]$ with $k = 1.28 \times 10^2 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$ (25 °C) and that *trans*- $[\operatorname{Ru}^{\operatorname{VI}}(\operatorname{L})O(\operatorname{X})]^{n+}$ is stable in the presence of PPh₃ (1 M) over a period of several hours at room temperature. The formation of trans-[Ru^{IV}(L)O(CH₃CN)]²⁺ in reaction 1 was also accompanied by the generation of O=PPh₃ as another reaction product, identified by its IR absorption bands at 712 and 1175 cm⁻¹. Groves and co-workers¹⁷ reported that the PPh₃ reduction of trans-[$Ru^{VI}(TMP)O_2$] yielded a Ru(II) complex as the isolatable product. These workers postulated an $[Ru^{IV}-$ (TMP)O] intermediate, which is unstable toward disproportionation into Ru(II) and Ru(VI). However, Ru^{IV}=O complexes with neutral amine ligands, such as trans- $[Ru^{IV}(L)O(X)]^{n+}$ and [Ru^{IV}(trpy)(bpy)O]²⁺, do not appear to disproportionate in solution. Thus the nonlabile ligands have a dramatic effect on both the stability and reactivity of the Ru^{IV}==O system. A neutral Ru^{IV}=O complex has so far not been reported. The chloride ligand in *trans*- $[Ru^{IV}(L)O(Cl)]^+$ mostly came from the reduction of ClO_4^- ion by PPh₃. *trans*- $[Ru^{IV}(14-TMC)O(Cl)]ClO_4$ has been characterized by X-ray crystallography.^{8a} Reaction of trans- $[Ru^{VI}(16-TMC)O_2][CIO_4]_2$ with PPh₃ in acetone gave a blue solution. Attempts to isolate pure trans-[Ru^{IV}(16-TMC)O-(Cl) ClO₄ out were unsuccessful, and the product was usually found to contaminate with some unidentified blue species.

The second method for trans- $[Ru^{IV}(L)O(X)]^{n+}$ involves the H_2O_2 oxidation of *trans*- $[Ru^{III}(L)(OH_2)_2]^{3+}$ in the presence of X⁻. *trans*- $[Ru^{IV}(L)O(N_3)]CIO_4$ and *trans*- $[Ru^{IV}(L)O(NCO)]$ - ClO_4 were prepared accordingly. It is likely that trans-[Ru^{III}- $(L)(OH_2)_2]^{3+}$ undergoes anation prior to the oxidation process

trans-[Ru^{III}(L)(OH₂)₂]³⁺ + X⁻
$$\rightarrow$$

trans- $[Ru^{III}(L)(OH_2)(X)]^{2+} \xrightarrow{[O]} trans-[Ru^{IV}(L)O(X)]^{+}$

Yukawa et al.¹⁸ recently reported the isolation of trans-[Ru^{IV}(py)₄O(Cl)]ClO₄ through H₂O₂ oxidation of trans-[Ru^{II}- $(py)_4(NO)CI][ClO_4]_2.$

A trans-dioxoruthenium(V) complex can be prepared by electrosynthesis from the parent trans- $[Ru^{VI}(L)O_2]^{2+}$. Solid

Figure 2. Simplified molecular orbital diagram illustrating the $p_r(O)$ and $d_{\pi}(M)$ orbital interaction of the "M=O" system.

trans-[Ru^V(14-TMC)O₂]ClO₄ was found to be very hygroscopic. For this reason, no attempt was made to isolate trans-[Ru^{VI}- $(15-TMC)O_2$ ClO₄ and trans-[Ru^V(16-TMC)O₂]ClO₄. trans- $[Ru^{v}(TMEA)_{2}O_{2}]^{+}$ was unstable in acetonitrile and slowly turned into an unidentified green substance at room temperature.

The results of molar conductivity measuremnts are available as supplementary materials (Table S1). With the exception of trans- $[Ru^{IV}(L)O(Cl)]ClO_4$ in water, the findings are in accord with the chemical formulation of the compounds, that is, 120-130 and 240-253 Ω^{-1} mol⁻¹ cm² for 1:1 and 1:2 electrolytes, respectively. The measured molar conductivity of 243 Ω^{-1} mol⁻¹ cm² for trans-[Ru^{IV}(14-TMC)O(Cl)]ClO₄ in water suggests that it exists as a 1:2 electrolyte in aqueous medium. Presumably, this complex undergoes rapid solvolysis in water

$$ns - [Ru^{IV}(14 - TMC)O(Cl)]^{+} + H_2O \rightarrow trans - [Ru^{IV}(14 - TMC)O(OH_2)]^{2+} + Cl^{-} (3)$$

tra

The presence of free Cl⁻ ion in solution was confirmed by the immediate formation of white AgCl precipitate upon addition of silver toluene-p-sulfonate to an aqueous solution of trans-[Ru^{IV}-(14-TMC)O(Cl)]⁺. Measurements on the Cl⁻ concentration with an ion-selective electrode also indicated that the equilibrium lies far to the right in reaction 3. trans-[Ru^{IV}(15-TMC)O(Cl)]ClO₄ and trans-[Ru^{IV}(TMEA)₂O(Cl)]ClO₄ behave in a similar manner.

All solid *trans*- $[Ru^{IV}(L)O(X)]^{n+}$ complexes are stable to room light at room temperature; they do not appear to decompose even upon storage for 1 week. Though trans-[Ru^{VI}(14-TMC)O₂]- $[ClO_4]_2$ had been obtained in crystalline form, the crystals gradually decomposed either in solution or in the dry state to give a straw-colored amorphous solid first and finally a black solid. We suggest that the instability of trans-[Ru^{VI}(14-TMC)O₂]- $[ClO_4]_2$ may be due to the large steric repulsive effect between the N-methyl groups and the proximal oxo ligands. In this regard, enlargement of the macrocyclic ring by replacement of 14-TMC with 15-TMC or 16-TMC might possibly relieve the steric constraint and hence increase the stability of the dioxo-Ru(VI) species. Accordingly, trans-[Ru^{VI}(15-TMC)O₂][ClO₄]₂ and trans- $[Ru^{VI}(16-TMC)O_2][ClO_4]_2$ are stable to room light for 2-3 h and appear to be indefinitely stable at 0 °C under dark conditions.

Electronic Configuration of Ruthenium Oxo Complexes. The results of magnetic susceptibility measurements are available as supplementary material (Table S2).

The electronic configuration of Ru=O complexes can be rationalized on the basis of the simplified molecular orbital energy scheme (Figure 2) after the works of Ballhausen, Gray, and Hare.¹⁹ Because of the $p_{\pi}(O)$ and $d_{\pi}(Ru)$ orbital overlap, the d_{xz} and d_{yz} orbitals, here denoted as d_{π^*} , are antibonding in nature

⁽a) Wong, K. Y. Ph.D. Thesis, University of Hong Kong, 1986. (b) Wong, K. Y.; Che, C. M.; Anson, F. C. *Inorg. Chem.* **1987**, *26*, 737. Groves, J. T.; Quinn, R. *J. Am. Chem. Soc.* **1985**, *107*, 5790. Yukawa, Y.; Aoyagi, K.; Kurihara, M.; Shirai, K.; Shimiza, K.; Mu-kaida, M.; Takeuchi, T.; Kakihana, H. *Chem. Lett.* **1985**, 283. (16)

⁽¹⁸⁾

⁽a) Ballhausen, C. J.; Gray, H. B. Inorg. Chem. 1962, 1, 111. (b) Gray, H. B.; Hare, C. R. Inorg. Chem. 1962, 1, 363. (19)

High-Valent Ruthenium Oxo Complexes

Figure 3. ORTEP drawings of the two possible conformations of the *trans*-[$Ru^{IV}(14-TMC)O(NCO)$]⁺ cation with the atomic numbering scheme.

and higher in energy than the d_{xy} orbital. On this basis, $d^4 \operatorname{Ru}^{IV} = O$ and $d^3 \operatorname{Ru}^{V} = O$ complexes are expected to have the $(d_{xy})^2(d_{xz})^1(d_{yz})^1$ and $(d_{xy})^2(d_{\pi^*})^1$ ground-state electronic configurations, respectively. All Ru^{IV}=O complexes including trans-[Ru^{IV}(py)₄O(Cl)]ClO₄ and [Ru^{IV}(trpy)(bpy)O](ClO₄)₂ are paramagnetic; their measured μ_{eff} of 2.70–2.95 μ_B (Table S2) are characteristic of the spin-only value for two unpaired electrons.^{3c,18} For trans-[Ru^V(14-TMC)O₂]ClO₄, its μ_{eff} of 1.94 μ_B (Table S2) at room temperature is in accord with the formulation of one unpaired electron in the d_* orbitals.

Structure Description of Ruthenium Oxo Complexes. Figure 3 shows the ORTEP drawings of the two possible conformations of the *trans*-[Ru^{1V}(14-TMC)O(NCO)]⁺ cation and the atomic numbering scheme. The Ru, C(4), C(5), N(3), C(9), O(1), and O(2) atoms all lie on the crystallographic mirror plane. The coordination geometry about the Ru atom is distorted octahedral with the metal atom displaced slightly from the mean plane of the four equatorial N atoms (mean deviation, 0.061 Å) toward the axial oxygen atom. The N(3)-Ru-O axis is slightly bent $(2N(3)-Ru-O(2) = 178.2^{\circ})$; similar findings on *trans*-[Ru^{1V}(14-TMC)O(CH₃CN)]²⁺ (∠N(CH₃CN)-Ru-O = 177.2) have also been observed.^{8a,b} The distortion of the X-Ru-O axis in *trans*-[Ru^{IV}(14-TMC)O(X)]ⁿ⁺ system is possibly a consequence

Table III. Comparison of the Ru-X (Axial Ligand) and Ru-N (Macrocyclic Amine) Distances of *trans*- $[Ru^{V1}(L)O_2]^{2+}$ (L = 15-TMC, 16-TMC) and *trans*- $[Ru^{IV}(14-TMC)O(X)]^{n+}$ (n = 1, X = Cl, NCO; n = 2, X = CH₃CN) Complexes

complex	Ru-X, Å	Ru-N, Å
$\frac{\text{trans-}[Ru^{VI}(15\text{-}TMC)O_2][ClO_4]_2}{\text{trans-}[Ru^{VI}(16\text{-}TMC)O_2][ClO_4]_2}$		2.17 (1)-2.22 (3) ^a 2.21 (1)-2.24 (1) ^a
trans-[Ru ^{IV} (14-TMC)O(CH ₃ CN)]- [PF ₆] ₂	2.149 (6) ^b	2.08 (5)-2.14 (1) ^b
trans- $[Ru^{IV}(14-TMC)O(Cl)]ClO_4$	$2.505(3)^{b}$	$2.07 (2) - 2.16 (2)^{b}$ 2.132 (5) - 2.134 (5)
ClO ₄	2.119 (0)	2.152 (5)-2.154 (5)

^aReference 8b. ^bReference 8a.

Table IV.	Ru==O	Bond	Distances	and	Stretching	Frequencies	in
Rutheniun	n Oxo C	omple	xes		-	-	

	d(Ru=O),	$\nu(Ru=O),$
complexes	Å	cm^{-1}
trans-[$Ru^{VI}(14-TMC)O_2$][ClO_4] ₂		850
trans- $[Ru^{VI}(15-TMC)O_2][ClO_4]_2$	1.718 (5) ^a	855
trans-[Ru^{VI} (16-TMC)O ₂][ClO ₄] ₂	1.705 (7) ^a	860
trans- $[Ru^{VI}(TMEA)_2O_2][ClO_4]_2$		860
trans- $[Ru^{Vl}(bpy)_2O_2][ClO_4]_2$		8 50°
trans- $[Ru^{VI}(TMP)O_2]$		821 ^b
trans-[Ru ^{IV} (trpy)(bpy)O][ClO ₄] ₂		792 ^d
trans- $[Ru^{IV}(py)_4O(Cl)]ClO_4$	1.862 (8) ^e	~800°
trans-[Ru ^{IV} (14-TMC)O(CH ₃ CN)]-	1.765 (5)	~815
$[\mathbf{PF}_6]_2$		
trans-[Ru ^{IV} (14-TMC)O(Cl)]ClO ₄	1.765 (5)	~815
trans-[Ru ^{IV} (14-TMC)O(NCO)]ClO ₄	1.765 (5)	~815
trans-[$Ru^{IV}(14-TMC)O(N_3)$]ClO ₄	1.765 (5) ^g	~815
trans-[Ru ^{IV} (15-TMC)O(CH ₃ CN)]-		~820
$[ClO_4]_2$		
trans-[Ru ^{IV} (15-TMC)O(Cl)]ClO ₄		~820
trans-[$Ru^{IV}(15-TMC)O(N_3)$]ClO ₄		~820
trans-[Ru ^{IV} (TMEA) ₂ O(Cl)]ClO ₄		~820

^aReference 8a. ^bReference 11. ^cReference 15. ^dReference 3. ^eReference 18. ^fReference 8a. ^gChe, C. M., unpublished result

of the nonbonded repulsive interactions of the N-CH3 groups with the axial ligand X. The two conformations of the 14-TMC ligand in trans-[Ru^{IV}(14-TMC)O(NCO)]⁺ cation are the "four up (down)" (R,S,R,S) and "two up, two down" (R,R,S,S)/(S,S,R,R)sets of nitrogen atom configurations; in the latter case, two adjacent N-CH₃ groups are cis to the Ru-O bond. The (R,S,R,S) configuration of the 14-TMC ligand has been found in trans-[Ru^{IV}(14-TMC)O(CH₃CN)][ClO₄]₂.^{8a} Other possible conformations, such as the "three up, one down" (R,S,R,R) set of nitrogen atom configurations is observed in trans-[Ru^{1V}(14-TMCO(Cl)^{+.8a} We believe that the observed orientations of the N-CH₃ groups of the 14-TMC ligand in the trans-[Ru^{1V}-(14-TMC)O(X)ⁿ⁺ system may not be related to the nature of the axial ligand X but rather to the reaction conditions employed for the preparation and isolation of the complexes. The five- and six-membered chelate rings of trans-[Ru^{IV}(14-TMC)O(NCO)]+ have gauche and chair conformations, respectively. The average Cl-O distance and O-Cl-O angle in the perchlorate group are respectively 1.42 ± 0.002 Å and $109.0 \pm 2.5^{\circ}$.

The Ru–N (equatorial amine) bond distances in the Ru(IV) and Ru(VI) oxo complexes are similar and fall within 2.10–2.2 Å (Table III), which are comparable to those found in other ruthenium macrocyclic amine complexes, such as *cis*- and *trans*-[Ru(14aneN₄)Cl₂]⁺.^{20,21} The Ru–N(NCO) bond distance of 2.119 (6) Å is comparable to the Ru–N(CH₃CN) bond distance (2.149 (6) Å) in *trans*-[Ru^{IV}(14-TMC)O(CH₃CN)]²⁺ (Table III). For O=Ru^{IV}-X complexes, the Ru-X bonds are abnormally long, indicating the strong trans effect of the oxo ligand.

Effect of Ligand and Oxidation State on the Ru=O Bond. Table IV summarizes the Ru=O bond distances and $\nu(Ru=O)$

⁽²⁰⁾ Che, C. M.; Kwong, S. S.; Poon, C. K.; Lai, T. F.; Mak, T. C. W. Inorg. Chem. 1985, 24, 1359.

⁽²¹⁾ Walker, D. D.; Taube, H. Inorg. Chem. 1981, 20, 2828.

Figure 4. IR spectra of (a) $trans-[Ru^{III}(14-TMC)Cl_2]ClO_4$ and (b) $trans-[Ru^V(14-TMC)O_2]ClO_4$ in the 750-900-cm⁻¹ region.

stretching frequencies of trans-[Ru^{VI}(bpy)₂O₂][ClO₄]₂,¹⁵ trans-[Ru^{VI}(TMP)O₂],¹¹ trans-[Ru^{IV}(py)₄O(Cl)]ClO₄,¹⁸ [Ru^{IV}- $(trpy)(bpy)O][ClO_4]_2$,^{3c} and the ruthenium tertiary amine oxo complexes. Assignment of the Ru=O stretch in trans-[Ru^{IV}- $(L)\dot{O}(X)$ ⁿ⁺ is only tentative since the tertiary amine ligand also absorbs in the 800-750-cm⁻¹ region. A careful examination of the IR spectra of trans-[Ru^{III}(14-TMC)Cl₂]Cl, trans-[Ru^{IV}(14-TMC)O(CH₃CN)][ClO₄]₂, and trans-[Ru^{1V}(14-TMC)O(Cl)]-ClO₄ showed the Ru(IV) complexes have an extra absorption band at ~810 cm⁻¹ that is possibly the Ru=O stretch. For the d^3 trans-[Ru^V(14-TMC)O₂]ClO₄ system [$(d_{xy})^2(d_{\pi^*})^1$], Jahn-Teller distortion along the x, y axis will split the degenarcy of the d_{π}^* orbitals. Two IR-active Ru=O stretches are expected. Figure 4 shows the IR spectrum of *trans*-[Ru^V(14-TMC)O₂]ClO₄ in the 750-900-cm⁻¹ region. The intense bands at 840-860 cm⁻¹ are likely due to the Ru=O stretches. For the dioxoruthenium(VI) system, only one intense IR-active $\nu_{as}(Ru=0)$ stretch is found, and the assignment has been discussed previously.^{10,14,15}

A direct comparison of the Ru=O stretching frequencies (840-860 cm⁻¹ vs. 810-790 cm⁻¹) and bond distances (1.70-1.71 Å vs. 1.765 Å) between trans- $[Ru^{VI}(L)O_2]^{2+}$ and trans- $[Ru^{IV}-$ (L)O(X)ⁿ⁺ complexes indicates that the Ru==O bond is weaker in the latter system. This finding is in accord with the bonding picture because putting two electrons into the antibonding d_x* orbitals should weaken the Ru=O bond $[Ru(VI), (d_{xy})^2; Ru(IV),$ $(d_{xy})^2(d_{xz})^1(d_{yz})^1]$. Enlargement of the macrocyclic ring size from 14-TMC to 16-TMC does not appear to perturb the Ru=O bond as the Ru=O distances for trans-[Ru^{VI}(15-TMC)O₂]ClO₄ and trans-[Ru^{VI}(16-TMC)O₂][ClO₄]₂ are similar (15-TMC, 1.718 (5) Å; 16-TMC, 1.705 (7) Å). For the *trans*-[Ru^{IV} (14-TMC)-O(X)]ⁿ⁺ system, the measured Ru=O bond distances are all 1.765 Å, independent of the charge of the metal complex and nucleophilicity of the axial ligand. Thus axial ligation does not perturb the Ru=O bond, reflecting that the primary bonding interaction in the X-Ru^{IV}=O system is the $d_{\pi}(Ru)$ and $p_{\pi}(O)$ orbital overlap. Accordingly, the Ru-X bonds in *trans*-[Ru^{IV}(L)O(X)]ⁿ⁺ complexes are all abnormally long (Table III)

Replacement of the equatorial amine ligand from the σ -saturated to the π -aromatic type has a dramatic effect on the Ru=0 bond. In the Ru^{IV}=O system, d(Ru=O) for trans-[Ru^{IV}-(py)₄O(Cl)]⁺ (1.862 Å)¹⁸ is ~0.1 Å longer than that for trans-[Ru^{IV}(14-TMC)O(Cl)]⁺, indicating that the former system

Table V. Formal Potentials of Ru(VI)/Ru(IV) and Ru(IV)/Ru(III)Couples of Ruthenium Oxo Complexes at pH 1.0

	\overline{E}_{f}^{o} ,
couples	V vs. NHE
$trans-[Ru^{VI}(14-TMC)O_2]^{2+}/$	0.90
trans-[Ru ^{IV} (14-TMC)O(OH ₂)] ^{2+ a}	
trans- $[Ru^{VI}(15-TMC)O_2]^{2+}/$	0.89
trans-[$Ru^{IV}(15-TMC)O(OH_2)$] ²⁺	
trans- $[Ru^{VI}(16-TMC)O_2]^{2+}/$	0.90
trans-[$Ru^{IV}(16-TMC)O(OH_2)$] ²⁺	
trans- $[Ru^{VI}(TMEA)_2O_2]^{2+}/$	0.91
trans- $[Ru^{IV}(TMEA)_2O(OH_2)]^{2+}$	
$trans-[Ru^{v_1}(bpy)_2O_2]^{2+}/$	1.25
trans- $[Ru^{1}(bpy)_2O(OH_2)]^{2+b}$	
trans- $[Ru^{1}(14-TMC)O(OH_2)]^{2+}/$	0.60
trans-[Ru ^{III} (14-TMC)(OH)(OH ₂)] ^{2+ a}	0.50
trans-[Ru ¹ (15-TMC)O(OH ₂)] ²⁺ /	0.58
trans-[Ru ^{III} (15-TMC)(OH)(OH ₂)] ²⁺	0.57
trans-[Ru ¹ (16-1MC)O(OH) ₂] ²⁺ /	0.57
$trans-[Rum(16-1MC)(OH)(OH_2)]^{2+}$	0.50
$trans-[Ru1(IMEA)_2O(OH_2)]^2/$	0.58
trans- $[Ru^{(1)}(IMEA)_2(OH)(OH_2)]^{2/2}$	1.10
trans-[$Ru^{(OPY)}_2O(OH_2)$] ²⁺ /	1.12
trans-[$Ku^{(OPy)}_2(OH)(OH_2)$] ²⁺⁵	

^aReference 6. ^bReference 15.

has a weaker Ru=O bond. For the trans-dioxoruthenium(VI) system, no structural work has been reported on trans-[Ruvi- $(bpy)_2O_2]^{2+}$ and *trans*-[Ru^{VI}(TMP)O_2]. However, the ν_{as} (Ru=O) stretching frequency for *trans*-[Ru^{VI}(TMP)O_2] is ~821 cm⁻¹, which is much lower than the 850-860-cm⁻¹ value found for those complexes containing neutral amine ligands. As shown later in the text, trans-[$Ru^{v\bar{l}}(TMP)O_2$] is a better epoxidation reagent than trans- $[Ru^{VI}(TMC)O_2]^{2+}$, in accord with the picture that the latter system has a stronger Ru-O bond. The weakening of the Ru=O bond by the π -saturated ligand, such as pyridine or the porphyrinate dianion, could be attributed to the repulsive coulombic interactions of the ligand p_{π} electrons and the $p_{\pi}-d_{\pi}$ electrons of the Ru=O bond. The observation of this ligand effect on the Ru=O bond is important because this will give guidelines in the future design of Ru=O system for uses in chemoselective oxidation reactions. We suggest that a short Ru=O bond will favor hydride/hydrogen atom abstraction and this can be achieved with highly oxidizing Ru(VI)-dioxo complexes of tertiary amine. For selective epoxidation reaction, one must look for those complexes having long and hence weak Ru=O bonds. The Ru^{IV}=O complexes containing dianionic π -unsaturated ligands are the best candidates.

Effect of Ligand on the Oxidation Potentials of Ru=O Complexes. We have previously shown that at pH 1.1, trans- $[Ru^{VI}(bpy)O_2]^{2+15}$ and trans- $[Ru^{VI}(14-TMC)O_2]^{2+10}$ exhibit a reversible two-proton two-electron Ru(VI)/Ru(IV) couple:

trans- $[Ru^{Vi}(L)O_2]^{2+} + 2H^+ + 2e^- \rightarrow$

trans- $[Ru^{1V}(L)O(OH_2)]^{2+}$

 $L = (bpy)_2$, 14-TMC, 15-TMC, 16-TMC, (TMEA)₂

Typical cyclic voltammograms for *trans*- $[Ru^{VI}(16\text{-}TMC)O_2]$ - $[CIO_4]_2$ in 0.1 M HCIO₄ and acetonitrile are shown in Figure 5. In acetonitrile, *trans*- $[Ru^{VI}(L)O_2]^{2+}$ undergoes a reversible oneelectron-reduction process:

trans- $[Ru^{VI}(L)O_2]^{2+} + e^- \rightarrow trans-[Ru^{V}(L)O_2]^+$

Table V summarizes the oxidation potential of Ru(VI)- and Ru(IV)-oxo complexes. Enlargement of the hole size from the 14- to 16-member ring does not affect the $E_{1/2}$ values of trans-[Ru^{VI}(L)O₂]²⁺/trans-[Ru^{IV}(L)O(OH₂)]²⁺ and trans-[Ru^{VI}(L)O₂]²⁺/trans-[Ru^V(L)O₂]⁺ redox couples. However, replacement of the σ -saturated tertiary amine by the π -aromatic one has a dramatic effect on the oxidation potential of the Ru-(VI)-dioxo complexes. trans-[Ru^{VI}(bpy)₂O₂]²⁺ is over 340 mV more oxidizing than trans-[Ru^{VI}(14-TMC)O₂]²⁺ in aqueous medium. Similar ligand effects on the reduction potential of

High-Valent Ruthenium Oxo Complexes

Figure 5. Cyclic voltammograms for trans-[Ru^{VI}(16-TMC)O₂][ClO₄]₂ $(\sim 1 \text{ mM})$ in (a) 0.1 M HClO₄ and (b) 0.1 M [Bu₄N]ClO₄ in acetonitrile. Conditions: working electrode, pyrolytic graphite; scan rate, 50 mV s⁻¹.

Ru^{IV}=O complexes have also been found. For example, the $E_{1/2}$ value for $[Ru^{IV}(bpy)_2(py)O]^{2+}/[Ru^{III}(bpy)_2(py)(OH_2)]^{3+}$ couple is 0.99 V vs. SCE^{3a} (1 M acid) whereas the corresponding value for trans-[Ru^{IV}(14-TMC)O(OH₂)]²⁺/trans-[Ru^{III}(14-TMC)- $(OH_2)_2$ ³⁺ couple is 0.36 V vs. SCE at pH 1.1.¹⁰ Thus the π aromatic amine, although oxidation resistant upon complexation, destabilizes the high-valent ruthenium oxo system, and is a poorer σ -donor than the σ -saturated tertiary amine.

For *trans*- $[Ru^{IV}(L)O(X)]^+$ system (L = 14-TMC, 15-TMC, (TMEA)₂; X = Cl, NCO, N₃), the electrochemical oxidation of Ru(IV) to Ru(V) at potential of 0.7-1.1 V (vs. AgNO₃ (0.1 M)/Ag) is a simple and reversible one-electron process.¹⁶ A summary of the $E_{1/2}$ values of the Ru(V)/Ru(IV) couples is shown in Table VI. The $E_{1/2}$ value is insensitive to the nature of tertiary amine; however, it varies with the nature of the axial ligand (X)and decreases with $X = Cl > NCO > N_3$, indicating that the electrode reaction is the metal-centered oxidation of Ru(IV) to Ru(V). No Ru(V)/Ru(IV) couple has yet been observed for trans- $[Ru^{IV}(L)O(CH_3CN)]^{2+}$ system. The trans- $[Ru^{IV}(L)O(X)]^{+}$ complexes are all electrocatalysts for the oxidation of alcohol.8b,16 Figure 6 illustrates the cyclic voltammograms of trans-[Ru^{IV}-(14-TMC)O(NCO)]⁺ in the presence and absence of 100 mM benzyl alcohol. Catalytic oxidative current at the same potential of the Ru(V)/Ru(IV) couple was found in all the *trans*-[Ru^{IV}-(L)O(X)]⁺ complexes. The rate of alcohol oxidation by trans- $[(14-TMC)O(X)]^{2+}$ decreases with X = Cl > NCO > N₃.¹⁶ Thus,

Table VI. Formal Potentials of Ru(V)/Ru(IV) Couples in 0.1 M [Bu₄N]BF₄ in Acetonitrile Solution

couples	$E_{\rm f}^{\rm o}$, V vs. Cp ₂ Fe ^{+/0}
trans-[Ru(14-TMC)O(Cl)] ^{2+/+}	1.10
trans-[Ru(15-TMC)O(Cl)] ^{2+/+}	1.10
trans-[Ru(TMEA) ₂ O(C!) ^{2+/+}	1.06
trans- $[Ru(14-TMC)O(NCO)]^{2+/+}$	0.89
trans- $[Ru(14-TMC)O(N_3)]^{2+7+}$	0.72
<i>trans</i> -[Ru(15-TMC)O(N ₃)] ^{2+/+}	0.71

^aGlassy-carbon working electrode.

Figure 6. Cyclic voltammograms of 2.4 mM of trans-[Ru^{IV}(14-TMC)-O(NCO)]⁺ in acetonitrile with [Bu₄N]BF₄ (0.1 M) as supporting electrolyte showing the catalytic current upon the addition of benzyl alcohol: (--) absence of alcohol; (---) 100 mM benzyl alcohol added. Conditions: working electrode, glassy carbon; scan rate, 100 mV s⁻¹.

axial ligand ligation plays a substantial role in affecting the redox reactivities of the Ru^v=O complexes.

UV-Vis Spectroscopy of Ru=O Complexes. There are two types of electronic transitions in the "Ru=O" system, the ligand-field $(d_{xy} \rightarrow d_{\pi^*})$ and ligand to metal $(P_{\pi}(O) \rightarrow d_{\pi}(M))$ charge transfer (LMCT).^{6,15,19,22} Figure 7 shows the optical spectra of *trans*-[Ru^{VI}(16-TMC)O₂]²⁺, *trans*-[Ru^{VI}(15-TMC)O₂]²⁺, and *trans*-[Ru^{VI}(14-TMC)O₂]²⁺ complexes in CH₃CN. The vibronic structured $d_{xy} \rightarrow d_{\pi^*}$ transition at 370-400 nm is a general characteristic optical spectral feature of the *trans*-dioxo-ruthenium(VI) system.²³ For *trans*- $[Ru^{VI}(L)O_2]^{2+}$, the position of this band is insensitive to the nature of the equatorial amine and the macrocyclic ring size of L (14-TMC, 388 nm; 15-TMC, 377 nm; 16-TMC, 375 nm) (Table VII), in accordance with the formulation that the electronic transition occurs within the nonbonding d_{π^*} orbitals. Occupancy of one or two electrons in the d_{π^*} orbitals will lower their energy. Accordingly, the $d_{xy} \rightarrow d_{\pi^*}$ transition will be red-shifted with decreasing oxidation state of

⁽²²⁾

Winkler, J. R.; Gray, H. B. Inorg. Chem. 1985, 24, 346. See also: Foster, S.; Felps, S.; Johnson, L. W.; Larson, D. B.; McGlynn, S. P. J. Am. Chem. Soc. 1973, 95, 6578. (23)

complexes	solvent	λ_{\max} , nm (ϵ_{\max} , cm ⁻¹ dm ³ mol ^{-1)a}
trans- $[Ru^{VI}(14-TMC)O_2][ClO_4]_2$	0.1 M HClO ₄	\sim 455 (sh) (50), 388 (560), \sim 305 (sh) (960), 255 (10 300), 225 (12 800)
	CH ₃ CN	~455 (sh) (50), 388 (560), ~305 (sh) (960), 255 (11000), 223 (15100)
trans-[$Ru^{VI}(15-TMC)O_2$][ClO_4] ₂	0.1 M HClO ₄	\sim 430 (sh) (50), 377 (540), \sim 325 (sh) (1700), 276 (12800), 235 (16000)
	CH3CN	\sim 430 (sh) (50), 377 (550), \sim 325 (sh) (1800), 276 (14000), 235 (18000)
trans- $[Ru^{VI}(16-TMC)O_2][ClO_4]_2$	CH3CN	425 (sh) (80), 375 (670), 304 (20200), 257 (14000)
trans- $[Ru^{VI}(TMEA)_2O_2][CIO_4]_2$	$0.1 M HClO_4$	\sim 430 (sh) (50), 385 (520), 280 (14000), 235 (20500)
	CH3CN	\sim 430 (sh) (50), 385 (530), 282 (14500), 235 (21000)
$trans-[Ru^{V}(14-TMC)O_{2}]^{+}$	CH ₃ CN	\sim 525 (sh) (20), 422 (240), 295 (5700), 210 (9000)
$trans-[Ru^{V}(15-TMC)O_{2}]^{+}$	CH3CN	\sim 530 (sh) (20), 420 (260), 295 (5000), 230 (7300)
trans- $[Ru^{V}(16-TMC)O_{2}]^{+}$	CH ₃ CN	~550 (sh) (~10), 448 (170), 350 (sh) (1200), 295 (5100), 240 (10400)
$trans-[Ru^{V}(TMEA)_{2}O_{2}]^{+}$	CH ₃ CN	422 (~400), 350 (sh) (~1500), 290 (~5000), 220 (~14000)
trans-[$Ru^{IV}(14-TMC)O(CH_3CN)$](ClO ₄) ₂	CH ₃ CN	420 (190), 290 (1600)
trans-[$Ru^{IV}(14-TMC)O(CI)$]ClO ₄	CH ₃ CN	460 (130), 295 (2300)
	0.1 M HClO ₄	420 (150), 280 (1600), 210 (9800)
trans-[$Ru^{IV}(14-TMC)O(NCO)$]ClO ₄	CH ₃ CN	460 (120), 295 (4600)
trans-[$Ru^{IV}(14-TMC)O(N_3)$]ClO ₄	CH3CN	~375 (sh) (~3000), 355 (3300)
trans-[$Ru^{IV}(15-TMC)O(CH_3CN)$][ClO ₄] ₂	CH ₃ CN	475 (170), \sim 360 (sh) (160), 285 (1300)
trans-[$Ru^{IV}(15-TMC)O(Cl)$]ClO ₄	CH ₃ CN	520 (110), \sim 370 (sh) (170), 298 (2500)
	0.1 M HClO_4	480 (140), 290 (2000), 220 (10700)
trans-[$Ru^{IV}(15-TMC)O(N_3)$]ClO ₄	CH₃CN	~390 (sh) (~2900), 370 (3360)
trans- $[Ru^{IV}(TMEA)_2O(CI)]CIO_4$	CH ₃ CN	560 (110), \sim 375 (sh) (100), 298 (2800)
	0.1 M HCIO ₄	540 (100), \sim 370 (sh) (110), 300 (2800), 205 (15000)

^{*a*} sh = shoulder. ^{*b*} Reference 6.

Table VIII. Reactions of *trans*-[Ru^{VI}(14-TMC)O₂][PF₆]₂ with Organic Substrates

		reacn	conditions		mol ratio		
substrates	quant of complex, mol	quant of substrate, mL	temp, °C	time, h	inert atmosphere	products identified (techniques used)	of product to complex
benzyl	1.70×10^{-4}	1	50	17		benzaldehyde (GC; GC-MS)	3.50
alcohol	1.47×10^{-4}	1	50	18	argon	benzaldehyde (GC; GC-MS)	1.71
	1.56×10^{-4}	1	25	17	0	benzaldehyde (GC; GC-MS)	2.50
2-propanol	1.70×10^{-5}	1	50	20	N_2	acetone (UV-vis)	
benzaldehyde	1.56×10^{-4}	1	50	18	-	nil (UV-vis; NMR)	
cyclohexene	1.70×10^{-4}	1	50	17		2-cyclohexen-1-one (GC; GC-MS)	0.79
-	1.70×10^{-4}	1	25	17		2-cyclohexen-1-one (GC;GC-MS)	0.52
cyclohexane	1.70×10^{-4}	1	50	14 h		nil (GC)	
toluene	1.70×10^{-4}	1	50	24 h		benzyl alcohol	0.04
						benzaldehyde (GC: GC-MS)	0.10

the central metal ion. For *trans*- $[Ru^{V}(L)O_{2}]^{+}$, the $d_{xy} \rightarrow d_{\pi^{*}}$ transition is at a lower energy (420-450 nm) (Table VII) when compared with those of the parent Ru(VI)-oxo complexes and is independent of the macrocyclic ring size of L. For the Ru^{IV}=O system, it is difficult to assign the ligand field transition since the optical spectra are dominated by the ligand to metal charge-transfer transitions. Recent works by Miskowski and co-workers,²⁴ however, revealed a vibronic structure absorption band in the 600-700-nm region in the single-crystal absorption spectrum of *trans*-[Ru^{IV}(14-TMC)O(N₃)]ClO₄.

For trans-[Ru^{VI}(14-TMC)O₂]²⁺, a band at 255 nm has previously been assigned as the $p_{\pi}(O) \rightarrow d_{\pi}(Ru)$ ($e_u \rightarrow e_g$) LMCT transition.¹⁰ A closer look at the high-energy region in the optical spectra of *trans*- $[Ru^{vI}(L)O_2]^{2+}$ system (Figure 8) reveals two intense absorption bands in the 200–300-nm region (λ_{max}/nm : 14-TMC, 225, 255; 15-TMC, 223, 255; 16-TMC, 257, 304). As the position and relative extinction coefficient of these two bands vary with the nature of the equatorial amine, these two bands have substantial $\sigma N(L) \rightarrow Ru(VI)$ charge-transfer character. In trans-[Ru^V(L)O₂]⁺ (Figure 9), an intense band at \sim 290-295 nm $(\epsilon_{\rm max}, 5000-6000)$, which is invariant to the nature of L, is likely to be the lowest energy $p_{\pi}(O) \rightarrow d_{\pi^*}(Ru)$ LMCT transition. Figure 8 shows the optical spectra of the trans-[Ru^{IV}(14-TMCO(X)ⁿ⁺ system (n = 2, X = CH₃CN; n = 1, X = Cl, NCO, N₃). With the exception of trans- $[Ru^{IV}(L)O(N_3)]^+$, all $Ru^{IV}=O$ complexes exhibit an intense band at 290-295 nm, which accordings with the LMCT $p_{\pi}(O) \rightarrow d_{\pi^*}(Ru)$ transition. Weak absorption bands are also found in the visible region (400-600 nm); their measured low ϵ_{max} values suggest that these are ligand field transitions in nature.

Oxo Complexes of Ruthenium(IV) and -(VI) as Organic Oxidants. The oxidation of organic substrates by RuO_4 and $RuO_4^$ systems have been studied previously.1 These oxidants, though powerful, usually cause undesirable side reactions. Other ruthenium oxo complexes such as [Ru^{VI}(bpy)O₂Cl₂],²⁵ Ba[Ru^{VI}- $O_3(OH)_2]$,²⁵ and $[Ru^{IV}(trpy)(bpy)O][ClO_4]_2^{3,26}$ were found to be mild oxidants. Table VIII summarizes the results of the reactions between trans-[Ru^{VI}(14-TMC)O₂][Y]₂ (Y = ClO₄, PF₆) and some organic substrates. For alcohols, it oxidizes benzyl alcohol to benzaldehyde and 2-propanol to acetone. No benzoic acid was detected by both UV-vis and NMR spectroscopy. Under the same reaction conditions as in the alcohol oxidation, treatment of benzaldehyde with trans-[Ru^{VI}(14-TMC)O₂][ClO₄]₂ also failed to give benzoic acid, indicating that trans- $[Ru^{VI}(14-TMC)O_2]$ - $[ClO_4]_2$ is a mild oxidant. Under degassed conditions, the reaction stoichiometry of benzyl alcohol to trans-[Ru^{V1}(14-TMC)O₂]- $[ClO_4]_2$ is ca. 2:1, in accord with the finding that trans- $[Ru^{iv}]$ $(L)O(X)]^{n+}$ complexes are capable of oxidizing benzyl alcohol (see discussion below).

Increasing the reaction temperature from 25 to 50 °C increased the rate of the reaction.

In the presence of air, catalytic aerobic oxidation of benzyl alcohol to benzaldehyde by trans-[Ru^{VI}(14-TMC)O₂]²⁺ was ob-

⁽²⁵⁾ Green, G.; Griffith, W. P.; Hollinshead, D. M.; Ley, S. V.; Schröder, M. J. Chem. Soc., Perkin Trans. 1 1984, 681.

⁽²⁶⁾ Dobson, J. C.; Seok, W. K.; Meyer, T. J. Inorg. Chem. 1986, 25, 1513.

⁽²⁴⁾ Miskowski, V. M., unpublished result.

Figure 7. UV-vis spectra in CH₃CN: (a) trans-[Ru^{V1}(16-TMC)O₂]²⁺; (b) trans-[Ru^{V1}(15-TMC)O₂]²⁺; (c) trans-[Ru^{V1}(14-TMC)O₂]²⁺.

Figure 8. UV-vis spectra in CH₃CN: (a) trans- $[Ru^{v}(16-TMC)O_{2}]^{+}$; (b) trans- $[Ru^{v}(15-TMC)O_{2}]^{+}$; (c) trans- $[Ru^{v}(14-TMC)O_{2}]^{+}$.

served. The turnover number was 3.5 after 17 h (at 50 °C). In the absence of the metal complex, only a trace amount of benzaldehyde was detected. Table IX lists the results on similar studies

Figure 9. UV-vis spectra in CH₃CN: (a) trans- $[Ru^{IV}(14-TMC)O(CH_3CN)]^{2+}$; (b) trans- $[Ru^{IV}(14-TMC)O(CI)]^+$; (c) trans- $[Ru^{IV}(14-TMC)O(N_3)]^+$.

Table IX. Comparison of the Reactivity of Different *trans*-Dioxoruthenium(VI) Complexes toward the Catalytic Aerobic Oxidation of Benzyl Alcohol to Benzaldehyde at Room temperature

		reacn conditions		mol ratio		
complex	quant of complex, mol	quant of PhCH ₂ OH, mL	time, h	of benzaldehyde to complex		
trans-[Ru ^{VI} (14-TMC)O ₂][ClO ₄] ₂	7.83×10^{-5}	0.5	17	2.5		
trans-[$Ru^{VI}(15-TMC)O_2$][ClO_4] ₂	8.53×10^{-5}	0.5	18	2.8		
trans-[$Ru^{V1}(16-TMC)O_2$][ClO_4] ₂	7.60×10^{-5}	0.5	18	2.2		
trans- $[Ru^{VI}(TMEA)_2O_2][ClO_4]_2$	7.56×10^{-5}	0.5	18	2.5		

Table X.	Reactions	of	trans-[Ru	۷(14-	TM	[C])0	(CH	3CN	J)]	[P]	F6]2	with	Organic	Substrates
----------	-----------	----	---------	----	----	-----	----	-----	----	-----	-----	-----	-----	------	------	---------	------------

		reacn c	onditions		mol ratio		
substrates	quant of complex, mol	quant of substrate, mL	temp, °C	time, h	inert atmosphere	products identified (techniques used)	of product to complex
benzyl alcohol	6.37×10^{-5}	0.5	28	21		benzaldehyde (GC; GC-MS)	5.4
	1.06×10^{-4}	0.5	25	24	argon	benzaldehyde (GC; GC-MS)	0.9
cyclohexene	1.97×10^{-4}	1	50	18		nil (GC)	

but with different *trans*-dioxoruthenium(VI) complexes. The macrocyclic ring size has little effect on the reactivities of these complexes.

trans- $[Ru^{VI}(14-TMC)O_2][ClO_4]_2$ is inert toward the oxidation

of saturated alkanes such as cyclohexane. However, with cyclohexene, oxidation at the allylic carbon occurred with 2cyclohexen-1-one as the only product. No cyclohexene oxide was detected which indicates the preferential attack of the activated

Table XI. Comparison of the Reactivity of Different Ru(IV)-Monooxo Complexes toward the Catalytic Aerobic Oxidation of Benzyl Alcohol to Benzaldehyde at Room Temperature (28 °C)

	reacn conditions			mol ratio
complex	quant of complex, mol	quant of C ₆ H ₅ CH ₂ OH, mL	time, h	of benzaldehyde to complex
trans-[Ru ^{IV} (14-TMC)O(Cl)]ClO ₄	1.15×10^{-4}	0.5	17	3.2
trans-[Ru ^{IV} (14-TMC)O(NCO)]ClO ₄	9.41×10^{-5}	0.5	18	3.9
trans-[$Ru^{IV}(14-TMC)O(N_3)$]ClO ₄	8.78×10^{-5}	0.5	21	5.6
trans-[$Ru^{IV}(TMC)O(CH_3CN)$][ClO_4] ₂	6.37×10^{-5}	0.5	21	5.4
trans-[Ru ^{IV} (15-TMC)O(Cl)]ClO ₄	9.67×10^{-5}	0.5	21	5.7
trans-[$Ru^{IV}(15-TMC)O(N_3)$]ClO ₄	9.39 × 10 ⁻⁵	0.5	18	3.7
trans-[Ru^{IV} (15-TMC)O(CH ₃ CN)][ClO ₄] ₂	8.30×10^{-5}	0.5	18	3.8
trans- $[Ru^{IV}(TMEA)_2O(Cl)]ClO_4$	4.41×10^{-5}	0.5	21	5.8

C—H bond over the C= double bond by trans-[Ru^{VI}(14-TMC)O₂][ClO₄]₂. This observation is in contrast with that found for trans-[Ru^{VI}(TMP)O₂], which reacted with cyclohexene giving cyclohexene oxide as the predominant product.^{17,27} The differential reactivity between trans-[Ru^{VI}(14-TMC)O₂]²⁺ and trans-[Ru^{VI}(TMP)O₂] is understandable. In the latter system, a long Ru=O bond is expected, and this favors the oxo transfer reaction. The short and hence strong Ru=O bond in trans-[Ru^{VI}(14-TMC)O₂]²⁺ [d(Ru=O) = 1.70-1.71 Å) will favor the hydride/hydrogen atom abstraction. Toluene is also oxidized by trans-[Ru^{VI}(14-TMC)O₂][ClO₄]₂ although the yield of the products is comparatively low (ca. 5%). The major reaction products were identified as benzaldehyde and benzyl alcohol. No attack on the aromatic ring was found.

The Ru^{IV}==O tertiary amine complexes are weaker oxidants than their parent Ru(VI)-dioxo species. No reaction was observed between $[Ru^{IV}(L)O(X)]^{n+}$ with olefin and cyclohexene, but they did oxidize benzyl alcohol to benzaldehyde (Tables X and XI). The reaction stoichiometry of *trans*- $[Ru^{IV}(L)O(X)]^{n+}$ to benzaldehyde is ca. 1:1 under argon atmosphere, in accordance with an overall two-electron process

In the presence of air, *trans*- $[Ru^{IV}(L)O(X)]^{n+}$ also catalyzed the aerobic oxidation of benzyl alcohol. All Ru^{IV} —O complexes exhibited similar catalytic oxidative behavior (Table X).

The relative inertness of the Ru(IV)-oxo complexes of tertiary amine toward organic substrate oxidation is in sharp contrast to the reported works on $[Ru^{IV}(trpy)(bpy)O]^{2+}$ and related complexes.^{18,26} The Ru^{IV}=O complexes containing π -aromatic amine ligands are active oxidants, capable of undergoing hydride abstraction and epoxidation under mild conditions.^{3d,26} The differential reactivity between *trans*- $[Ru^{IV}(14-TMC)O(CH_3CN)]^{2+}$ and $[Ru^{IV}(trpy)(bpy)O]^{2+}$ is understandable, since the latter system is more oxidizing and has a weaker Ru=O bond.

Conclusion

We have demonstrated here that stable Ru=O complexes could be obtained with the central metal ion in the IV, V, and VI oxidation states. As expected, trans Ru(VI)-dioxo complexes are stronger oxidants than the corresponding Ru^{IV}=O species. In general, the Ru(IV) system possesses weaker metal-oxo bond than the Ru(VI) system, indicating that they are in general better candidates for oxo transfer reactions. Axial ligation does not perturb the Ru=O bond in the Ru(IV) state, but the oxidation potential and reactivity of *trans*-[Ru^V(L)O(X)]ⁿ⁺ system vary with the nature of the coordinated axial ligands. Replacement of the σ -saturated amine by the π -aromatic one increases both the metal-oxo bond length and the oxidation potential of the Ru=O complexes. It would therefore be expected that high-valent ruthenium oxo complexes containing π -aromatic amines will show promising oxidation chemistry as suggested by Meyer and coworkers.³

Acknowledgment. C.-M.C. and K.-Y.W. acknowledge financial support from the Committee of Conference and Research Grants of University of Hong Kong. Helpful discussions with H. B. Gray and V. M. Miskowski on certain aspects of electronic spectroscopy are also acknowledged. We also thank T. C. W. Mak for his help in part of the X-ray structure work. T.-F.L. acknowledges support from the National Institute of General Medical Sciences, USPHS, Grant No. GM-16966 (R. E. Marsh), during her leave at the California Institute of Technology.

Registry No. trans-[Ru(14-TMC)O₂](PF₆)₂, 95978-19-1; trans-[Ru(15-TMC)O₂](ClO₄)₂, 98938-47-7; trans-[Ru(16-TMC)O₂](ClO₄)₂, 98938-50-2; trans-[Ru(TMEA)2O2](ClO4)2, 98938-52-4; trans-[Ru(14-TMC)O₂]ClO₄, 103056-18-4; trans-[Ru(14-TMC)O(CH₃CN)](PF₆)₂, 98767-23-8; trans-[Ru(14-TMC)O(Cl)]ClO4, 98938-54-6; trans-[Ru-(14-TMC)O(N₃)]ClO₄, 108452-21-7; trans-[Ru(14-TMC)O(NCO)]-ClO₄, 108452-22-8; trans-[Ru(15-TMC)O(CH₃CN)](ClO₄)₂, 108452-24-0; trans-[Ru(15-TMC)O(Cl)]ClO4, 99350-79-5; trans-[Ru(15-TMC)O(N₃)]ClO₄, 108452-26-2; trans-[Ru(TMEA)₂O(Cl)]ClO₄, 108452-28-4; trans-[Ru(14-TMC)O2](ClO4)2, 95978-18-0; trans-[Ru-(15-TMC)O₂]⁺, 108452-29-5; trans-[Ru(16-TMC)O₂]⁺, 108452-30-8; trans-[Ru(TMEA)₂O₂]⁺, 108452-31-9; trans-[Ru(14-TMC)O-(CH₃CN)](ClO₄)₂, 108452-32-0; trans-[Ru(14-TMC)Cl₂]ClO₄, 95785-32-3; trans-[Ru(15-TMC)O(OH₂)]²⁺, 108452-33-1; trans-[Ru(16-TMC)O(OH₂)]²⁺, 108452-34-2; trans-[Ru(TMEA)₂O(OH₂)]²⁺, 108452-35-3; trans-[Ru(15-TMC)(OH)(OH₂)]²⁺, 108452-36-4; trans-[Ru(16-TMC)(OH)(OH2)]2+, 108452-37-5; trans-[Ru(TMEA)2-(OH)(OH2)]2+, 108452-38-6; trans-[Ru(14-TMC)O(Cl)]2+, 98938-55-7; trans-[Ru(15-TMC)O(Cl)]²⁺, 98938-56-8; trans-[Ru(TMEA)₂O(Cl)]²⁺, 108452-39-7; trans-[Ru(14-TMC)O(NCO)]²⁺, 108452-40-0; trans-[Ru(14-TMC)O(N₃)]²⁺, 108452-41-1; trans-[Ru(15-TMC)O(N₃)]²⁺, 108452-42-2; trans-[Ru(15-TMC)Cl2]Cl, 101981-47-9; trans-[Ru-(TMEA)₂Cl₂]Cl, 108452-43-3; trans-[Ru(16-TMC)Cl₂]Cl, 101981-49-1; trans-[Ru(14-TMC)Cl2]Cl, 92141-42-9; PPh3, 603-35-0; benzyl alcohol, 100-51-6; 2-propanol, 67-63-0; benzaldehyde, 100-52-7; cyclohexene, 110-83-8; cyclohexane, 110-82-7; toluene, 108-88-3; hydrogen peroxide, 7722-84-1.

Supplementary Material Available: Tables of molar conductivity (Table S1) and magnetic susceptibility (Table S2) measurements and anisotropic temperature factors (3 pages); a table of calculated and observed structure factors (6 pages). Ordering information is given on any current masthead page.

⁽²⁷⁾ Che, C. M., unpublished work.